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The integral equation of convolution given on an arbitrary number of segments for quite 
general kernels is examined. This equation contains the integral equations of contact 

problems for a layer which is at rest on a rigid &nearly deformable base. It also contains 
the integral equations of problems in the creep theory and the integral equations of some 

classic dynamic contact problems. Many mixed problems in the theory of elasticity, 

hydromechanics, and mathematical physics are reduced to Equation (X.1) (review Cl]). 

The Equation (1.1) is solved in closed form l-21 only in very special cases. In most 
cases it must be solved by one or another approximate method. In almost all efforts in 

this area Equation (1.1) is analyzed under the assumption that -li -== 1. One of the approx- 
imate methods of solution is based on the utilization of approximate “factorization” 

which is a special representation of some functions describing the integral equation [3, 

41. In this case the effectiveness of the obtained approximate solution is then checked 
on particular examples. Papers in which the method of approximate factorization is 

justified, i.e. in which estimates are given for the accuracy of the approximate solution, 
are not known to the author, 

In this paper the solvability of the equation in spaces which are important for appli- 
cations, and the classes of correctness are established. The method of approximate fac- 

torization is substantiated. At the same time a method is given which allows to construct 
for Equation (1.1) an approximate solution which in a uniform metric differs arbitrarily 
little from the exact solution. 

1, The integral equation of the following form is analyzed: 

Kq EZ 5 
a2 ii 

$ k (x .-- t) qtkll (E) dE -= 2nf2,,-1 (z) ss rnj (x) 
k -1 ‘zok_, 

“Igm-i< x <aZm, /a, / < Co, [ffzi$ I< m (m = 1,4,. . . . N) 

the kernel /C (1) can be represented in the form 
CC 

We will assume that 

1) the function K (u) is continuous, real and even 
2) the function 

3) the function 

K (U) > 0, I u I -=c cx 

K (u) -; c%L-?y II + 0 (u-“)I: U --z 00, 

Here 6 satisfies the following inequalities 
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on the x-axis, 

O<r<l 

(1 .I) 

(1.2) 

(4.3) 



6 . ‘( for ; 3 0.:3, 6 _J 1 - r for *(/.I().5 

kt us introduce a number of definitions for spaces needed later. 

1.1”. Let us designate through jr, the set of the following functions y (z) : 

j/ 4 i/T{ r K (II) 1 Q (10 I2 d/i, ~ ,’ c-0, Q(z) \’ f/(z)c~‘~~~dr (1.5) 
1. 

Evidently. elements from I{., belong to some range of Hilbert spaces [:,I. 

1.2”. Through s (o)and s (cJ), respectively, we designate spaces of complex sequen- 

ces X em (x,, ), which converge with the weight ILO . In the case of s (CT) here the con- 

vergence is to zero, i.e. 

I irn 1 nT.xn 1 c (II, -*c ), 0 > 0. c<m 

In each of the spaces we introduce a norm through the relationship 

I/ x ~: sup7, 1 rPz, ] 

1.3O. We denote by c, h (a, b) the space of functions for which the 1~ th order deri- 

vative on [a, b] satisfies Hoelder’s condition with an index 0 ( 3, < 1 and a norm 

For k = h = 0 we have that C (a, 6) is the space of continuous on [a, bl func- 

tions. 

114O. L, (a, b) is the space of absolutely summable on [a, b] functions of a 

degree p > 1 and an ordinary norm. 
1.5”. We ~111 say that f (I) E E if for its Fourier transform F (h) the following 

relationship holds : m 

ljfj!EL- \ I-$$- IrEA. W, f(z) 7 F(h)eiWh (1.5) i 
^, ---0; 

The value of the function / (2) on the segment [a,, -1, a,,1 will be designated by 

fzk-_~ (z). It is apparent that f (x) tG c (-ool m). 
1.6”. By C (y) we will designate the set of functions which are continuous with the 

weight (x - QZ/~-~)’ (a2tL -- z)” on segments [a,+,, ~“~1. 

The function f (z) E CT (y). if 

llf II cc.,j :- supIi mas, I(2 ---- c/~~;_ J‘( (uzl, - J,)‘/ (.r) / c ~(3 

Z.E [Q-l, Qy;l 

2. 1”. Equation (1.1) is the usual equation of convolution in which rl!e unknown 
function q (z) becomes zero outside the segments [u~~__~, n2kl. /c I, 2, . . ., ,v. 

In contact problems of the theory of elasticity [1] the values of the function Q (J) on 
segments lazk-1, &!+I represent the unknown contact stresses (12k-_, (I(.) under the 
stamp. On this segment the values of the function f (x) are known. These values for 
.z Cz la,k- 17 CZ~J will be designated by /.,k_l (x). The function f (;c) characterizes 
the displacements of points on the surface of the layer. Outside the segments [nab_, . 
Qzhl the values of the function i (J.) are unknown. The function f’L~,_-, (J) character- 
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izes the shape of the foundation of the stamp and the depth of penetration of the stamp 

into the layer. 
The preliminaries described here are helpful for the selection of the necessary classes 

of functions which must be used for the analysis of Eq. (1. I). 

The class of functions q (x) must be shch that: 
(1) the function f (5) must be bounded for 1 x 1 < cm; 
(2) the energy which is accumulated by the elastic body when stamps are pressed into 

it, must be finite for stamps acting on finite segments, 

2”. Let us study the properties of the function h: (t). Using known theorems from the 

theory of Fourier integrals [6], we obtain the following result. 

Lemma 2.1. The following estimates are valid for t +- 0 : 

k (t) =- 0 (P’-q, y ( 0.5; h (t) = 0 (In / t I), y = 0.5 

lfc (t) = 0 (I), y > 0.5 

For ] t 1 > E > 0 the function k (t) is continuous. 

On the basis of Lemma 2.1 the following theorem is proved. 

Theorem 2.1. The operator K acts continuously from L, into C (- T, 1’) 
Here (2~)~~ < p < 00, y < 0.5; 1 < p < 00, 0.5 < y, T < CO. 

Under conditions of Theorem 2.1 apparently requirement (1) of the previous section 

is satisfied. The condition which permits to assert the fulfilment of property (2) of the 

previous point gives 
Lemma 2. 2. Any space L,, (y -1. 0.5)-l < p < cm, y < 0.5 and 

1<p-=V% 0.5 < Y is imbedded in HI:.. 

The proof of the Lemma follows from the boundedness of the operator of the Fourier 

transformation p] acting from L,, 1 < p < 2 into L,, q = p (p - I)-‘. 
Theorem 2. 2. in the space L, (p == 2, y & 0.25; (2~)~‘< p < 2, 

0.25 < y < 0.5; 1 < p < 2, 0.5 < y } the equation (1.1) cannot have more 

than one solution. 

Proof. Multiplying Eq. (1.1) by q (x) E L, and integrating along the entire axis, 

we obtain N ‘,k 

(2.1) 

k-la. o,h.-.1 

By virtue of Theorem 2.1 and Lemma 2.2 the relationship (2.1) is correct. It follows 
from (2.1) that if fzb_r (~1 s 0, J E [Q,L._~, $klr then 9 (CC) - 0. !I/ < 00. The theorem 

is proved. 

3O. Theorem 2.2 is valid for a more general equation. 
Let iv (u) be a real function, even and continuous on the real axis, which has the 

PropertY &f(U) = 0(li-2y-8), u-_, m (2.2) 

The value of 6 is given in Sect. 1. 

Let us examine the perturbed equation (1.1) of the form 

Kq + hMq = 2,zf, Mq z i aik m (z - ‘E) q,tc-, (E) 4 (2.3) 
h-:=1 a$+l 

Here h is a complex parameter. The function m (5) has the form 



‘i’. A. liaheshko 

Theorem 2. 3. Let 

jj MK1 //C(-co,. co) = maxIM(u)K-l(u)/ r-X<1 (/u]<cQ) (2.5) 

Then for Eq. (2.3) Theorem 2.2 is valid if h lies within the circle 

(2” 1 :x-’ (Lb) 

The proof of Theorem 2.3 is analogous to the proof of Theorem 2.2 if in Eq. (2.3) 
the real and imaginary parts are separated and examined as separate equations. 

Theorems 2.2 and 2.3 prove the uniqueness for Eqs. (1.1) and (2.3). The following 
Sections are devoted to the proof of existence of a solution. 

3, Theexistenceof asolution for Eq, (1.1) is established with the aid of the well known 
method of perturbations. For this purpose the operator K is split in two in a special 
manner : K, and M,. The first one of these will turn out to be invertible, the second one 
small in some space. After this the proof of existence of a solution will not present any 
difficulties. 

1”. The process of decomposition is started with the construction of a special repre- 
sentation of the function K (U). 

Lemma 3.1. The following representation is valid : 

K (u) = KS (u) + MS (u), --oo~U<CC (3-j) 

The function KS (u) satisfies conditions (l)-(3) in Sect. 1, it is meromorphic, and in 

the complex plane it has single poles 5, and single zeros z, with a sufficiently large 
modulus. The first s zeros can have a finite multiplicity greater than one. 

Taking into account multiplicity, the zeros z,and poles 5, of the upper half-plane 
have the asymptotics 

z, - i (fin + b) B, 6, g > 0; 5, - i (Bn + g) n -+ 0~ (3.2) 
The function M, (U) has the property (2.2). and in addition 

IIM, \l~(-~, 33) = max, I Jf, (4 I+ 0, S--to0 (3.3) 
The representation (3.1) can be obtained on the basis of a theorem of completeness 

[S], which in this paper is utilized in the form of the following lemma. 

Lemma 3.1. Let the even, real, and continuous, on the entire real axis, function 

cp (u) vanish at infinity. Then in C (-co, 3) this function can be approximated by 
the following functions : 

(Pk (u) =- (12 -t .Ak2)--, i;, :z ok + T > 0 

Let us apply Lemma 3.1 to the function 

K (u) - Ko (~1 cp (x) = ____- 
Ko(u) ’ 

(3.4) 

b - g = ~$7 c = p’ 

Here r (2) is Euler’s gamma function. 

Selecting ih, to be different from the poles of the function K,, (u), we obtain 
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v (‘) = i ck(Pk t”) + R,(u), R, (u) = 0 (u-6), u -+ oo (3.5) 
k=l 

Here R, (u) is the residual term of the approximation, and c,+are the coefficients of 
approximation. 

Since /I R, (u) ~~C(--co,03) + 0 for s -+ co. it is possible to find such an so that for 

s > SO the representation (3.1) will be valid with all indicated properties, In this con- 
nection 

K, (u) = K,(u) [i i- jl ckqk (d] 9 M, (u) = K,(u) R, (c) (3.6) 

2’. Now let us take up the analysis of Eq. (1.1) with the kernel (1.2) in which 

the role of the function K (u) is played by K, (u.), 
Equations (1.1) with meromorphic function KS (u) were already studied for A’ = 1 

in papers [9-111. 
The integral equations are reduced to an infinite system of linear equations which 

turns out to be uniquely solvable [ll]. The solvability of the system can be proven 

because of the minimality properties of exponential functions on a finite segment estab- 

lished in [ 121 (p. 133) and in [ 131. 
Other methods also exist for the reduction of the integral equation or the correspond- 

ing boundary value problem [14, 151 to an infinite system. In this connection the 

obtained infinite systems are identical to the ones in [g-11, 161, however, the method 
used does not permit the proof of their solability as a whole. 

We will seek a solution of the integral equation (1.1) with the right side (1.5) in the 

form of a series 

+ yl (2k - I, u) (uzk - z)” exp izl (uzk - x)] ‘iv (3.7) 
a 2K_1 Gx < a21( 

Here p (1) + 1 is the multiplicity of the zero zl, which lies on the upper half-plane. 

It is assumed that the numbering of zeros z, and poles gl,of the upper half-plane is car- 

ried out in the order of increasing moduli and arguments (in the case of equal moduli). 

Representing the kernel k (t) in the form of a series in residues and utilizing (3.7), 

we arrive after integration at an infinite system for 

x, = {XI (2k - 1, U,>, Y, = {y1{2k - 1, v)} 
k-l 

AXk+CkYk+ 2 [B(1,m)~~,+B(2,n!Y,,1 =Lk 
m=1 

.d>'k+ckxk+ 5 [D(1,m)Y,,,+0(2,4X7,1 =Gk 

m=k+l 

x, = Y, = XN+l = Yy+1= 0, k=i,“,...,N 

(3.5) 

M P (0 

AX, = 
i 

2 ‘2 a,,, (v)q (2k --! 1, u,] 
1=1v=o 

starting with some I, all p (1) ez 0. 



For the transition from the integral equation to the infinite systcrll to be legitimate 1 
it is necessary [11-l:%] to establish the possibility of representing the function b s (I:) 

in the form of a ratio of two entire functions 1’ (1~) and 0 (LU). The indicatrices of 

growth of these functions must be equal to 5 1 YIII ([ ;, 2 > t!. 
For entire functions representing K, (11) according to (“. 6) with rhe asymptotic of 

zeros (3.2) the mentioned properties of indicatrices of growth were established in [17] 

(p. 144). 
The properties of operators generated by matrices A, El, C, D are examined in 

[9-11, 181. 
The following lemma is necessary for later application. 

Lemma 3. 2. The operator A-IR is continuous from any S (IS), CJ > 0 into 

S (1 - y). llere R is any of the operators C, B, D. The elements of the matrix 

A-‘, which is the bilateral inverse of A , are given by the relationship 

“2-1 = {Tl,,. (1’)) = (II,. ( - Y[) 1.) {K...’ (;r)l’ ‘} 
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u -= 0 for p (1) = 0. 

Here & (u) = KF (u) is the result of factorization [19] of function K,$ (u), i.e. 
the representation of the latter in the form of a product of functions which are regular 

in the upper and lower planes 

K, (u) = K,’ (U) K,- (U)) KS+ (- u) = K,- (ZL) 

Apparently, s 

KS’ (u) = r (6 / [j -- iu / p) r-l (b i 9 - iu / f3) [I + 2 ck(P;; (1) i / 
p-1 + 

Lemma 3.3. The operator of imbedding of s (0) into S (h), k < CJ is comple- 
tely continuous. 

This Lemma is easy to prove if we take into account that s (3~) is a space with a base 

[201. 
3”. In order to prove the solvability of system (3.8), let us examine Eq. (1.1) 

with a right side of the form 

(3.!lj 

(A. 10) 

With regard to sequences V (k) ym- {V, (k, u)} . it is assumed that they are arbitrary 
elements from s (a) 

l-2y<o<l, y & 0.5; 0 < (5 < 1, 0.5 < y 

As a result of these assumptions functions ok (E) belong to the class of uniqueness 

indicated in Theorem 2.2. 
As in Sect. 3. 2”. we reduce the integral equation (1.1) with the right side (3.9) to 

an infinite system of linear algebraic equations. The solution of the integral equation 
will be sought in the form (3.7) for F (q) s 0. As a result we obtain the infinite sys- 

tem (3.8) in the right side of which are the following elements: 

L, = AV (2k - l), Gk == AV (2k) (3.1 I) 

We operate from the left with the matrix A--l on the system (3.8) which has the 
right side as in (3.11). As a result we arrive at an equation of the second kind which 

symbolically can be represented in the form 

x+ux-v (X 12) 

Here V is an element of a space of a &V-dimensional infinite sequence. The Ith 
component of this space is Vl (1, s), VI (2, s), . . . . r/l (Zni, s), The element X also 

belongs to this space. 
It is completely clear that the introduction of this space only simplifies the form of 

notation for the infinite system. The essence of the infinite system (3.12). however. 

consists in the fact that the operator U by virtue of Lemmas 3.2 and 3.3 is completely 



continuous in any s (A), 1, (, 1 -.-- y. 
This circumstance turns out to be essential in the proof of solvability of system (3.12) 

and together with it also of integral equations (1.2). 

In fact, in its structure the system (3.12) is equivalent to the integral equation (1.1) 
with the right side (3.9). Since Eq. (1.1) cannot have more than one solution, then by 

virtue of earlier indicated properties of Dirichlet series utilized here, the infinite system 

(3.12) also cannot have more than one solution in any s (A), 3L > 0. However, the right 

side of system (3.12) is an arbitrary ele.ment of Banach space. Thus, Eq. (3.12) is an 

equation of the second kind in Banach space with a completely continuous operator. 

This equation also does not permit more than one solution for any arbitrary right side. 

This means 1211 that the index of the operator and both defective numbers are zeros, 

i.e. Eq. (3.12) is uniquely solvable for any right side 

V E s (A), i;<l--y 

In order to construct a solution of system (3.12) it can be reduced p2, 111 to some 
finite system of linear equations. It was established above that the determinant for this 

system is not equal to zero. 
It turns out that as a final result the solution S of system (3.12) can be represented 

in the form 
‘Y = (1-t tj)“t C’, // .q,,,,cq(r j- I.:) “1 . j/Vjj.(A, (.:.l;i) 

The obtained results will be applied to system (3.8). 

Lemma 3.4. Let f (xf E E. Then the solution of the system (3.8) belongs to 
s (1 - j’) and the following estimate is vaiid : 

1; .Y /I,$ (l .() < -1 i/ i ill?, .\ -: corlst~ t.:. 15) 

The proof follows from the fact that the free term of the system of the second kind 

belongs to the space S (1 --- y), and the resolvent (I i- U)‘.’ is continuous in this space. 
Taking into consideration the result of Lemma 3.4 and applying it to the series (3.7). 

we prove the following theorem. 

Theorem 3.1. Let f (5) E E. Then for i< (11) A, (x) the following esti- 

mate is valid jj q j[i irJ <I j/ ti, ’ ji / i j/t.. (ti.15) 

The proof of this theorem is omitted. 
As a result of Lemma 3.4 combined with the Euler-Maclaurin formula for the series 

(3.7) it is sufficiently simple to obtain (3.15). 
We point out that /I K,-ljj can be computed in the case of large U for iv -- f utiliz- 

ing formulas of f23] which remain valid for U < y < 1, 

4, Now let US turn to the proof of solvability of Eq. (1.1) with a general kernel. We 
examine Ey. (2.3) in which k’ (u) and &I (u) coincide with K, (U) and ;I[,. (~1). 

respectively. For il --= 1 Eq. (2.3) is apparently identical to (1.1). 
By virtue of property (3.2) it is possible to select such an s > 0 that the condition 

of Theorem 2.2 is satisfied. This means that Eq. (2.3) for all ?b from the circle (2:. 6) 

cannot have mote than one solution (and may not have any at all !) in I,,, which is 
given by Theorem 2. d. 

We note that L’ (r). T ( ?y, y < 0.5; z < 1, y :> 0.:) is irnbedded in the 

indicated I.,,. 
We will show that Eq. (2.3) has a solution in c,’ (v) . Let f (x) 2 E. Then by virtue 
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of Lemma 3.4 and taking into account the estimate (2.2) for selected s > 0 , it is pos- 

sible to represent Eq. (2.3) in a symbolic manner in the following form: 

q + hK,-‘M,q = KS-l/ (4.1) 

Here Y (x) is a vector-function determined on finite segments [aZk_i, ~a~]. The 
operator KS-l is constructed on the basis of solution (3.13) of an infinite system of 
linear equations. 

The following lemma turned out to be the most complicated in this work. 
Lemma 4.1. The operator K,-rM, is completely continuous in 

C(r), Y<r<(x”, x0 =- inf (6, 2y), y < 0.5; x0 = inf (6, I), y > 0.5. 

Proof. The operator Kil . 1s constructed through the application of a certain iteration 

process to the infinite system of equations and by subsequent solution of a uniquely inver- 

tible finite system [Xl-]. In just this manner it is possible to analyze successfully the 

operator KS-l. The operator K,-lJM, represents a superposition of operators which are 
analogous to the ones presented below 

Here e > (1 iioes not exceed the half-width of the band of regularity of the function 

K, (u). 
The complete continuity of operators P and R must be verified on segments 

&k-r, a.J, /? =- 2, z, . . . . N in the space C (r). This indicates that sets of func- 
tions Pq and Rq for /IQ]/c(~) <B with the weight (azk - x)~ (X - uzk_$ must 
be compact on each of segments ]a,k-,, a3k] in the metric of the space C. 

The function Q (u) which appears in (4.2) is given by the relationship (1.4). 
An estimate of the form 

K,+ (2) = cz-y [I + 0 (z-‘)I, Iz I-•fm, Iargz+n/21>0 

makes it easier to check the indicated properties of the operator R. 
Lemma 4.1 makes it possible to prove the solvability of Eq. (4. l), which, as was men- 

tioned at the beginning of this Section, cannot have more than one solution (but may 

have none at all) for ]h]<r. -1 z- 1 -1 0, 0>0 (It.::) 

Let function / in Eq. (2.3) be given by the relationship 

f -_~ Krp, cp (L-c) ,_ c: (T), y<t<r,” (4.4) 

The selected function r+ (z) belongs to L, indicated in Theorem 2.2. 
Such a choice of function f permits to represent Eq. (4.1) in the form 

4 + hK,-lM,q = ‘p (,lt.S) 

Equation (4.5) is an equation of the second kind with completely continuous operator 
in the Banach space. It can have no more than one solution for any right side from this 
space for any A from a circle (4.3). Using the same reasoning as in Sect. 3.3”, we con- 
clude that (4.5) is uniquely solvable for all 1 iv I < x-l, this includes also h =-I 1. 

The solution of (4.5) can also be obtained by the method of successive approximations. 



?‘hc process converges for all j IL / ( x I. ‘ihis follows frorli the fact that the spectra1 

radius f) of the operator (4. :I) (radius of a circle which does not coritain points of tht: 

spectrunl of the operator). is no less than % t. 

Returning now to Eq. (2. :\) we conclude that it is uniquely solvable in (,’ (1’) for all , 

SllCll tl1,7t ii,-'/ z r (y) (5.;) 

It is evident from Theorem :i. 1 that condition (4.7) is valid for / .I! I;‘. 

FurJiermorc // q ;!, ( ,) <‘j ii -1 ii . Ij / ;I,., , Ij K-1 /; : f . jl I<,- ;/ ( i . s ) 

In applications the most frequently encountered case [I] is 1 0.5. It can he sho\gii 

that in this particular case for relationship (4.7) to be valid it is sufficient that 

f G C,‘. (A > 0.5) ( i.9) 

For these right parts the following estimate is applicable 

I/ (I I//, (0 :,, c .I[ /I I iI, 1, ( ‘t.10) 

Inequalities (4. 8), (4.10) are relationships of correctness for the integral equation 

(1.1). They indicate that a small change in the right side of Eq. (1.1) in E and (CIA) 

leads to a small change of the solution in C (y), (I: (o.:i)). 

5. The obtained results are applied to a proof of the method of approximate factor- 

ization. Let there be two integral equations of the form 

lirqi mm_ 2nf, K,q, 'nf 

It is assumed that their kernels have the form (1.2) and that in this case the Fourier 

trasforms K, (11) and h’s (u) , respectively, satisfy conditions (l)-(3) of Sect. 1, and also 

that f E E. 

Theorem 5.1. Let the quantity C > 0 

E z rrrax 1 A, (u) - K, (u) 1 A,-’ (II) (1 -+ 1 II 1)” (rrG[-- c,cx,il 

a :> 1 --~ \‘, y < 0.5; a > \‘? 0..5 <; 1 

satisfy the condition 
t’ < II&’ Il-‘C 

Then the following estimate is valid 

II’la -- 4&(-i, <FL/I Iq’jl(J - FL/jK1 ’ 1:) ‘ll’/t jl ‘(Yl 

Here B (5, !I) is Euler’s beta function. The quantity I I he,-’ j j is given hy the rela- 

tionship (4. 8). The theorem is proved by a method well known in the theory of pertur- 

bations. This method is based on successive approximations. It is necessary only to keep 

in mind that the operator K, - Ii? acts continuously from C (v) into & and its norm 

does not exceed the quantity ~1,. 

In conclusion the author thanks his teacher 1. I, Vorovich for a number of recommend- 

ations. It was at the insistence of I. I. Vorovich that this work was carried out. 
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